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Abstract
The Hilbert–Noether theorem states that a current associated with
diffeomorphism invariance of a Lagrangian vanishes on shell modulo a
divergence of an arbitrary superpotential. Application of the Noether procedure
to physical Lagrangians yields, however, meaningful (and measurable)
currents. The well-known solution to this ‘paradox’ is to involve the variation
of the metric tensor. Such procedure, for the field considered on a fixed (flat)
background, is sophisticated logically (one needs to introduce the variation of
a fixed field) and formal. We analyse the Noether procedure for a generic
diffeomorphism invariant p-form field model. We show that the Noether
current of the field considered on a variable background coincides with the
current treated in a fixed geometry. Consistent description of the canonical
energy–momentum current is possible only if the dynamics of the geometry
(gravitation) is taken into account. However, even the ‘truncated’ consideration
yields the proper expression. We examine the examples of the free p-form
gauge field theory, the GR in the coframe representation and the metric-free
electrodynamics. Although the variation of a metric tensor is not acceptable in
the latter case, the Noether procedure yields the proper result.

PACS number: 04.20.−q

1. Introduction

Probably, the main problem of the Noether procedure is to establish a reasonable
correspondence between the set of physical meaningful and measurable currents on the one
hand and the set of formal Noether currents on the other hand [1–21]. It is well known that the
relation between these two types of quantities is highly non-trivial. In particular, the Noether
theorem states that a current associated with a gauge symmetry of a Lagrangian necessarily
vanishes on shell modulo a divergence of an arbitrary superpotential. Consequently, this
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Noether current is not observable and is physically meaningless. On the other hand, the
superpotential (Noether charge) is known to play the crucial role in Wald’s analysis of the
black-hole entropy [22, 23].

It was recognized long ago that, in order to have a proper description of the electromagnetic
current, one has to extend the pure electrodynamic system by introducing charged scalar and/or
fermionic fields.

We will show in this paper that the situation for the energy–momentum current is fairly
similar. Namely, the consistent description of the energy–momentum current via the Noether
procedure is only possible if the gravitational field is taken into account.

The purpose of this paper is to carry out this task for a p-form gauge field ψ , or, as one
also says, for an antisymmetric tensor field [24, 25]. This field can be furnished with some
interior indices, i.e., it can be tensorial valued. We assume that the Lagrangian depends only
on the field ψ and its exterior derivative dψ . Certainly, our requirements are rather restrictive
and take out of the consideration a wide class of mathematically interesting models. The
aim of this paper is to examine how the problems of the Noether procedure appear in this
relatively simple context. Note that even with these restrictions, our framework is suitable for
the description of many interesting physical models, including gravity.

The organization of the paper is as follows. In the next section, neglecting any
geometric features of the manifold, we recall the standard Noether procedure for a generic
Lagrangian of a p-form field. We restate the well-known fact that the Noether current,
associated with diffeomorphism invariance, vanishes identically on shell. It should be noted
that our treatment is completely local, so diffeomorphism invariance always refers to local
diffeomorphism transformations. In particular, we ignore the topological obstructions (such as
non-orientability) which can forbid the existence of global frame fields and of global volume
forms.

We argue that this triviality of the conserved current appears because the geometry of the
manifold is completely ignored in this consideration. A viable Lagrangian density has to be
represented by an odd (twisted) differential form. Such a Lagrangian cannot be constructed
only out of even forms: the field and its derivative. It always has to involve some odd operator
of the type of Hodge’s dual map, which changes the parity of the form. Such an odd operator
necessarily depends on the geometric features of the manifold, similar to the Hodge map,
which depends on the metric tensor.

In order to find out a non-trivial conserved current, we consider in the second section a
model for a p-form field given on a fixed coframe background. The variation procedure now
takes into account, with some restrictions, the variation of the coframe field in addition to the
variation of the field ψ . The total Noether current of the system vanishes on shell. However,
now we are able to identify a non-trivial energy–momentum current for the field ψ with a
piece of this trivial total Noether current. The derivation involves, however, some logical
contradictoriness. Namely, the coframe field has to be considered as subject to variations,
even if it is fixed. The situation is similar to the derivation of the Hilbert energy–momentum
tensor for a field given on a fixed manifold. This justifies the necessity to involve a dynamical
coframe field, or, in physical language, to consider the gravity field together with the field ψ .

In the third section we consider a system of a p-form field and a coframe field, both
dynamical. We show that the derivative of the Lagrangian with respect to the coframe (Hilbert
current) plays a role of the conserved source in the coframe field equation. Again, the total
Noether current, associated with the diffeomorphism invariance of the system, vanishes on
shell. However, this equation now represents a relation between the Noether and the Hilbert
currents. Moreover, we derive in this way an explicit expression of the Hilbert current, of the
Noether charge, and the Noether identity. All these quantities are well defined.



Noether currents and charges for Maxwell-like Lagrangians 8869

In the fourth section we deal with a generic first-order Lagrangian shifted by a total
derivative. We show that such shift preserves the field equations as well as the conserved
energy–momentum current. The Noether charge is shifted, however.

In the fifth section we consider three examples of generalized Maxwell Lagrangians. We
examine the free p-form gauge field theory, the GR in the coframe representation and the
metric-free electrodynamics.

2. A p-form Lagrangian

2.1. Non-geometric Lagrangian

Consider a p-form field ψ defined on an n-dimensional differential manifold M. It is a
straightforward generalization of the ordinary 1-form potential field A of 4D Maxwell
electrodynamics. We describe the dynamics of the field ψ by a generic Lagrangian n-form of
first order, i.e., only the field and its exterior (first-order) derivative are involved,

L = L(ψ, dψ) (2.1)

see, for instance, [1]. Denote the derivatives of the Lagrangian taken with respect to the
field ψ by

σ := ∂L
∂ψ

π := ∂L
∂(dψ)

. (2.2)

We will refer to the (n − p)-form σ as the current of the field ψ , and to the (n − p − 1)-form
π as the field strength.

Using these abbreviations, the variation of the Lagrangian (2.1), in the exterior form
notation, may be written as

δL = δψ ∧ σ + δ(dψ) ∧ π. (2.3)

Applying the commutativity of the operators d and δ, we extract the total derivative and obtain
the variational relation

δL = δψ ∧ E + d� (2.4)

where the (n − p)-form

E := σ − (−1)p dπ (2.5)

is the action of the Euler–Lagrange operator on the field ψ . The (n − 1)-form � is defined as

� := δψ ∧ π. (2.6)

The form � is linear in variations of the field. This quantity is sometimes referred to as the
pre-simplectic potential [22, 23]. Observe that for a given Lagrangian both quantities E and
� are well defined without any ambiguity.

Consider the variations of the fields which vanish at a boundary of a region. We obtain
the field equation which immediately yields the conservation law for the (n − p)-form σ :

E = 0 or dπ = (−1)pσ �⇒ dσ = 0. (2.7)

Returning to the variational relation (2.4), we recognize a special case, when the variation of
the Lagrangian is an exact form δL = dS. Equation (2.4) now implies the existence of an
(n − 1)-form � := −S + � which is conserved modulo the field equations, i.e., on shell:

d� + δψ ∧ E = 0 ⇐⇒ d� ≈ 0. (2.8)

Here and in the following, we use the symbol ’≈’ for ‘equal up to a linear combination of the
field equation form E’.
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The Lagrangian (2.1) depends only on the exterior form field and its exterior derivative,
thus it is diffeomorphism invariant. In order to specialize the diffeomorphism invariance, the
variations of the field have to be generated by the Lie derivative taken with respect to a smooth
vector field ξ ,

δψ = Lξψ = d(ξ�ψ) + ξ�dψ. (2.9)

Because of the diffeomorphism invariance, the variation of the n-form Lagrangian is induced
by the Lie derivative taken with respect to the same vector field ξ , i.e.,

δL = Lξψ = d(ξ�L). (2.10)

Accordingly, we have an (n − 1)-form

�(ξ) = −ξ�L + �(ξ) (2.11)

generated by the diffeomorphism symmetry of the Lagrangian, which is weak (on shell)
conserved

d�(ξ) + δψ ∧ E = 0 d�(ξ) ≈ 0. (2.12)

We will refer to �(ξ) as the Noether current. The explicit expression for this quantity is
derived from (2.9)–(2.11) as

�(ξ) = −ξ�L + [(ξ�dψ) + d(ξ�ψ)] ∧ π. (2.13)

Because the Lagrangian depends only on ψ and dψ , also the field strength π depends only
on these variables. Thus, the Noether current is locally constructed only out of the quantities
ψ, dψ , and the undefined vector field ξ . Extracting the total derivative in (2.13) and using the
field equation (2.7), we decompose the Noether current as

�(ξ) = S(ξ) + dQ(ξ) (2.14)

where

S(ξ) := −ξ�L + (ξ�dψ) ∧ π + (ξ�ψ) ∧ σ (2.15)

is an (n − 1)-form current, whereas

Q(ξ) := (ξ�ψ) ∧ π (2.16)

is an (n − 2)-form charge. Certainly, two currents are conserved on shell simultaneously,

d�(ξ) ≈ 0 ⇐⇒ dS(ξ) ≈ 0 (2.17)

for an arbitrary vector field ξ .
As is proved in [8], a decomposition of a type (2.14) may be provided for an arbitrary

diffeomorphism invariant Lagrangian. It means that a total derivative can be extracted from
the Noether current in such a way that the remaining term S(ξ) is (algebraically) linear in the
undetermined vector field ξ . Decompose ξ into its components according to ξ = ξaea . The
current S(ξ) involves the undefined vector field ξ only in a linear algebraic form. Hence it
fulfils

S(ξ) = ξaS(ea). (2.18)

Thus the conservation law for this current reads

dS(ξ) = dξa ∧ S(ea) + ξa dS(ea) ≈ 0. (2.19)

The arbitrariness of ξ means independence of the quantities ξa and dξa . Hence, two terms
on the right-hand side of (2.19) should vanish simultaneously. Thus we obtain two, so-called,
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cascade equations [1, 29]

ξa : dS(ea) ≈ 0 (2.20)

dξa : S(ea) ≈ 0. (2.21)

Observe that (2.20) is not merely a consequence of equation (2.21). Indeed, (2.21) means
S(ea) = Aa

b ∧ Eb, for some (p − 1)-form Aa
b. Thus its exterior derivative is not, in general,

proportional to the field equation.
Because of (2.18), (2.21), the current S(ξ) vanishes on shell, i.e., on all solutions of the

field equation, for an arbitrary vector field ξ ,

S(ξ) ≈ 0. (2.22)

Inserting (2.22) into (2.14) we obtain

�(ξ) ≈ dQ(ξ). (2.23)

In this way, we derive the well-known property of gauge conserved currents (Noether–Hilbert
theorem). The conserved Noether current �(ξ), which corresponds to the gauge invariance
of the Lagrangian (diffeomorphism in our case), is exact on shell. Although some technical
differences, our differential form consideration is similar to the tensorial treatment in [1].

Let us take into account the intermediary result (2.22) of our derivation: the vanishing of
the current S(ξ) on shell. In the case of the ordinary Maxwell field with p = 1, ψ = A, and

L = − 1
2 dA ∧ ∗ dA. (2.24)

Equation (2.15) takes the form

S(ea) = − 1
2ea�(dA ∧ ∗ dA) + (ea�dA) ∧ ∗ dA). (2.25)

Thus, it is completely identical to the electrodynamic energy–momentum current. This current
uniquely defines the ordinary measurable energy–momentum tensor [34]. Thus S(ξ) cannot
vanish for the electrodynamic fields identically. Consequently, at least in the case of the free
Maxwell field, we seem to reach a ‘contradiction’ to the Noether–Hilbert theorem.

It is well known, that the problem comes from elimination of the geometric variables
from the variation procedure. The consideration above is, in fact, restricted to Lagrangians
which depend only on the fields and their derivatives. Such Lagrangians are even (untwisted)
forms, thus it is rather natural that they do not contribute to the measurable energy–momentum
quantities. Dicke [27] proved that it is almost impossible to construct a non-trivial Lagrangian
for a field ’interacted only with itself’. Only for the metric field a non-trivial Lagrangian can be
constructed (Hilbert–Einstein). All other physical Lagrangians, in fact, represent interaction
with some other field (the metric field in most cases). This is a situation appeared in (2.24),
where the metric is involved implicitly by the Hodge operator, which makes the Lagrangian
an odd form.

2.2. Non-dynamical coframe

A non-trivial Lagrangian has to be represented by an odd (twisted) n-form. We assume the
field ψ to be even (untwisted). Thus, in addition to the even form ψ and its derivatives, the
Lagrangian has to include some odd operator on forms. This odd operator necessarily inherits
certain geometrical properties of the manifold. It can be, for instance, the ordinary Hodge dual
map or the constitutive tensor of the metric-free electrodynamics [34]. Such operator may be
defined by the metric tensor or by the coframe field. For the time being, we do not specify
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the odd operator used and only assume that the Lagrangian depends also on a fixed coframe
field ϑa ,

L = L(ψ, dψ,ϑa). (2.26)

Certainly, we require the coframe field to be essentially involved in the p-form field Lagrangian.
It means that the derivatives ∂L/∂ϑa and ∂L/∂(dψ) are assumed to be non-zero functions of
dψ and ϑa .

The variation of this Lagrangian, taken with respect to ψ and ϑa , is

δL = δψ ∧ σ + δd(ψ) ∧ π + δϑa ∧ ∂L
∂ϑa

= δψ ∧ E + δϑa ∧ ∂L
∂ϑa

+ d(δψ ∧ π). (2.27)

In the absence of constrains, the general variation procedure requires us to consider
independent variations of all fields involved in the Lagrangian. Thus in addition to the field
equation

E = 0 ⇐⇒ dπ = (−1)pσ (2.28)

we obtain ∂L/∂ϑa = 0. It means that the field ϑa cannot be incorporated into the Lagrangian,
at all. In order to overcome this obstacle we require only the variation δψ to be free. It
means that the coframe field is considered to be non-dynamical. Thus we have only one field
equation (2.28). The variation of the Lagrangian on shell remains in the form

δL ≈ δϑa ∧ ∂L
∂ϑa

+ d(δψ ∧ π). (2.29)

Observe that, in contrast to (2.4), the right-hand side of (2.29) is not a total derivative. We may
apply, however, the diffeomorphism invariance of the Lagrangian also in this case. Consider
again the variation of the fields to be produced by the Lie derivatives. In accordance with the
non-dynamical nature of the coframe field, we will require dϑa = 0. Thus relation (2.29)
takes the form

d�(ξ) + d(ξ�ϑa) ∧ ∂L
∂ϑa

≈ 0 (2.30)

where �(ξ) is defined in (2.13). We use (2.14) to obtain

dS(ξ) + d(ξ�ϑa) ∧ ∂L
∂ϑa

≈ 0 (2.31)

where S(ξ) is defined in (2.15). This equation has to be satisfied for an arbitrary vector field
ξ . Spelling out (2.30) explicitly for ξ = ξaea , we obtain

dξa ∧
[
S(ea) +

∂L
∂ϑa

]
+ ξadS(ea) ≈ 0. (2.32)

Independence of the quantities ξa and dξa yields two cascade equations

ξa : dS(ea) ≈ 0 (2.33)

dξa : S(ea) ≈ − ∂L
∂ϑa

. (2.34)

Thus we resolve the contradiction mentioned above. The first cascade equation represents the
weak conservation law for the current S(ea). This current does not vanish now, in contrast
to (2.21).

In the tensorial approach of field theory, the derivative ∂L/∂gµν represents the Hilbert
energy–momentum tensor. In the coframe approach the similar meaning may be given to
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the derivative ∂L/∂ϑa . Consequently, the second cascade equation represents the equality
between the canonical current S(ea) and the coframe Hilbert current ∂L/∂ϑa .

The price of this result is some non-completeness of the variation procedure. (i) We were
forced to consider the coframe field as fixed and non-dynamical, however we have to take the
variation of the Lagrangian also with respect to this field. (ii) The condition dϑa = 0 was
applied, thus we restricted ourself to consider only holonomic coframes.

In order to resolve these problems, we have to make the coframe field dynamical.

3. Matter–coframe system

3.1. Lagrangian and field equations

Let us take an n-dimensional, smooth, orientable, differential manifold M. We describe the
geometry on M by a smooth coframe field ϑa and its dual: a frame field ea , where a = 1, . . . , n.
The duality is expressed by the relation ea�ϑb = δb

a , where � is the interior product operator.
The coframe field ϑa is a set of n even (untwisted) 1-forms, which are linear independent at
every point of M. The duality relation provides the linear independence also of the frame field
ea (a set of n even vector fields). In the case of the teleparallel (coframe) approach to gravity,
the manifold M is endowed also with a metric g = ηabϑ

a ⊗ ϑb. We will not use time being
the metric tensor, thus we are working on a metric-free background endowed with a coframe
field.

Assume the matter to be represented by a p-form field ψ . Certainly, a viable matter system
has to also include some set of fermionic fields, which we exclude from the consideration, for
the sake of simplicity. Thus we are dealing with some generalization of the Maxwell–Einstein
system.

We assume the fields ϑa, ea and ψ to be even (untwisted). It means that they are invariant
under a change of orientation of the manifold. We describe the matter–coframe system {ϑa, ψ}
by a generic Lagrangian form of first order:

L = L(ψ, dψ,ϑa, dϑa). (3.1)

A non-trivial Lagrangian has to be represented by an odd (twisted) n-form. Thus, in addition to
the even forms ψ,ϑa and their derivatives, the Lagrangian has to involve some odd operator on
forms. We do not specify the odd operator and only assume that this operator can be expressed
in terms of the coframe field. Denote the derivatives taken with respect to the coframe field as

�a := ∂L
∂ϑa

a := ∂L
∂(dϑa)

. (3.2)

The odd (n − 1)-form �a will be referred to as the current of the coframe field while the odd
(n − 2)-form a as the strength of the coframe field. The derivatives of the Lagrangian taken
with respect to the matter field are defined in (2.2). We will refer now to the odd (n−p)-form
σ as the current of the matter field, and to the odd (n − p − 1)-form π as the strength of the
matter field.

Using the abbreviations (2.2) and (3.2), variation of the Lagrangian may be written as

δL = δψ ∧ σ + δ(dψ) ∧ π + δϑa ∧ �a + δ(dϑa) ∧ a. (3.3)

Extracting the total derivatives, we obtain the variational relation

δL = δψ ∧ (mat)E + δϑa ∧ (gr)Ea + d� (3.4)

where the field equation forms are
(mat)E := σ + (−1)p+1 dπ (3.5)
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(gr)Ea := �a + da (3.6)

while the pre-simplectic potential is

� := δψ ∧ π + δϑa ∧ a. (3.7)

Observe that for a given Lagrangian all the quantities (mat)E, (gr)Ea and � are well defined
without any ambiguity.

Consider the variations of the fields which vanish at a boundary of a region. We obtain
the matter field equation (mat)E = 0, or, explicitly,

dπ = (−1)pσ (3.8)

and the coframe field equation (gr)Ea = 0, i.e.,

da = −�a. (3.9)

The left-hand sides of equations (3.8), (3.9) are the derivatives of the strengths. Hence, the
right-hand sides of these equations represent the sources of the matter field and of the coframe
(gravity) field, respectively.

These field equations yield two conservation laws for the sources:

(i) conservation of the matter current

dσ = 0 (3.10)

(ii) conservation of the coframe current

d�a = 0. (3.11)

For the generic Lagrangian used, these two conserved currents depend on both fields: matter
field ψ and the coframe (gravity) field ϑa , i.e., the currents include the contributions of two
fields as well as the interaction between them. The conservation laws (3.10), (3.11) are
consequences of the field equations. They, however, are strong conservation laws, because
their right-hand sides do not involve the combinations of the field equations (mat)E and (gr)Ea .
This is in contrast to the weak Noether currents that will appear below.

3.2. Noether current and charge

In the case that the variation of the Lagrangian is an exact form, δL = dS, the variational
relation (3.4) again implies the existence of an (n − 1)-form � := S − �, which is conserved
modulo the field equations:

d� + δψ ∧ (mat)E + δϑa ∧ (gr)Ea = 0 ⇐⇒ d� ≈ 0. (3.12)

Consider the variations of the field that are generated by the Lie derivative taken with respect
to a smooth vector field ξ , i.e.,

δψ = Lξψ = d(ξ�ψ) + ξ�dψ (3.13)

and

δϑa = Lξϑ
a = d(ξ�ϑa) + ξ�dϑa. (3.14)

The diffeomorphism invariance of the n-form Lagrangian yields

δL = Lξψ = d(ξ�L). (3.15)

Accordingly, we have a weak (on shell) conserved odd (n − 1)-form generated by the
diffeomorphism symmetry of the Lagrangian

�(ξ) = −ξ�L + � d�(ξ) ≈ 0. (3.16)
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We will refer to �(ξ) as the total Noether current of the matter–coframe system. The explicit
expression for this quantity is derived from (3.7), (3.13), (3.14) as

�(ξ) = −ξ�L + [(ξ�dψ) + d(ξ�ψ)] ∧ π + [(ξ�dϑa) + d(ξ�ϑa)] ∧ a. (3.17)

This conserved current is locally constructed out of the fields appearing in the Lagrangian and
of the unspecified vector field ξ .

Extracting the total derivatives and applying the field equations, we decompose this current
as

�(ξ) = S(ξ) + dQ(ξ) (3.18)

where

S(ξ) = −ξ�L + (ξ�dψ) ∧ π + (ξ�ψ) ∧ σ + (ξ�dϑa) ∧ a + (ξ�ϑa) ∧ �a (3.19)

whereas

Q(ξ) := (ξ�ϑa) ∧ a + (ξ�ψ) ∧ π. (3.20)

The currents �(ξ) and S(ξ) are weak conserved simultaneously. The current S(ξ) is
algebraically linear in the vector field ξ , so S(ξaea) = ξaS(ea). Thus the cascade equations
read

ξa : dS(ea) ≈ 0 (3.21)

dξa : S(ea) ≈ 0. (3.22)

We rewrite them explicitly as

S(ea) = −ea�L + (ea�dψ) ∧ π + (ea�ψ) ∧ σ + (ea�dϑa) ∧ a + �a ≈ 0. (3.23)

Thus we derive

�a ≈ ea�L − (ea�dψ) ∧ π − (ea�ψ) ∧ σ − (ea�dϑa) ∧ a (3.24)

which is the proper conserved and non-trivial energy–momentum current of the system.
Substituting (3.21) into (3.18) we obtain

�(ξ) ≈ dQ(ξ) (3.25)

where the explicit form of the Noether charge is given in (3.20). This (n − 2)-form is locally
constructed out of the fields appearing in the Lagrangian and ξ . For a proof that this is possible
in a general diffeomorphism invariant case see [9].

3.3. Noether identity

Return to the variational relation (3.12) and consider the case when the variation of the
Lagrangian is an exact form. Equation (3.12) can be viewed as a condition that the equation
forms E have to fulfil in order to yield an exact form

δψ ∧ (mat)E + δϑa ∧ (gr)Ea exact. (3.26)

In the case of diffeomorphism invariance, the first term reads

(ξ�dψ) ∧ (mat)E − (−1)p(ξ�ψ) ∧ dσ (3.27)

up to a total derivative. Analogously, the second term in (3.26) gives

(ξ�dϑa) ∧ (gr)Ea + (ξ�ϑa) ∧ d�a. (3.28)

The sum of the terms (3.27) and (3.28) should be an exact form for an arbitrary ξ . Observe,
however, that if it is true for some vector field ξ it will not be true for a vector field f ξ ,
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where f is an arbitrary function. The only possibility is to require the sum of the terms (3.27)
and (3.28) to be zero. Thus we have

(ξ�ϑa) ∧ d�a = (ξ�dψ) ∧ (mat)E − (−1)p(ξ�ψ) ∧ dσ − (ξ�dϑa) ∧ (gr)Ea. (3.29)

On shell it means

(ξ�ϑa) ∧ d�a ≈ (−1)p+1(ξ�ψ) ∧ dσ. (3.30)

We replace the vector field by the vector basis ξ → ea and obtain the Noether identity

d�a = (ea�dψ) ∧ (mat)E − (−1)p(ea�ψ) ∧ dσ − (ea�dϑb) ∧ (gr)Eb (3.31)

or on shell

d�a ≈ (−1)p+1(ea�ψ) ∧ dσ. (3.32)

This identity shows that, on shell, two currents, �a and σ are conserved simultaneously.

4. A total derivative in Lagrangians

The form (3.1) of the Lagrangian is not general enough to include all viable Lagrangians.
Particularly, the Hilbert–Einstein Lagrangian for gravity involves the second-order derivatives
of the metric tensor. The remarkable feature is that the second derivative terms appear in the
form of a total derivative. We utilize this property and consider a generic Lagrangian shifted
by a total derivative

L̃ = L(ψ, dψ,ϑa, dϑa) + d�(ψ, dψ,ϑa, dϑa) (4.1)

where � is an arbitrary (n − 1)-form locally constructed from the fields and their first-order
derivatives only. The total derivative shift, as it is well known, preserves the field equations. Let
us examine how the shift (4.1) influences the conserved currents. Because the Lagrangian (4.1)
involves second derivatives of the dynamical fields, it is of second order due to the usual
classification. However, because the variation operator commutes with the exterior derivative,
the first-order formalism is applicable also in this case. Variation of the transformed
Lagrangian (4.1) takes the form

δL̃ = δL + d(δ�). (4.2)

The shift form � generates additional terms, which may be collected in

δL̃ = δψ ∧ σ̃ + δ(dψ) ∧ π̃ + δϑa ∧ �̃a + δ(dϑa) ∧ ̃a (4.3)

where the shifted quantities are defined as [21]

σ̃ := σ + (−1)pd

(
∂�

∂ψ

)
(4.4)

π̃ := π +
∂�

∂ψ
+ (−1)p+1d

(
∂�

∂(dψ)

)
(4.5)

and

�̃a := �a + d

(
∂�

∂ϑa

)
(4.6)

̃a := a − ∂�

∂ϑa

− d

(
∂�

∂(dϑa)

)
. (4.7)

We extract the total derivatives in (4.3) and obtain

δL̃ = δψ ∧ (mat)Ẽ + δϑa ∧ (gr)Ẽa + d(�̃) (4.8)
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where the field equations forms are
(mat)Ẽ := σ̃ − (−1)pdπ̃ (4.9)

(gr)Ẽa := �̃a + d̃a (4.10)

and the pre-simplectic potential is

�̃ := δψ ∧ π̃ + δϑa ∧ ̃a. (4.11)

The corresponding field equations have the same form as (3.8), (3.9). Moreover, because of
(4.4)–(4.7), they are equivalent

dπ̃ = (−1)pσ̃ ⇐⇒ dπ = (−1)pσ (4.12)

and

d̃a = (−1)p�̃a ⇐⇒ da = (−1)p�a. (4.13)

The shifted quantities π̃ and ̃a do not pick up an additional exact form. The conserved
currents σ̃ and �̃a are shifted only by a total derivative. Thus we are confronted with the
known problem of an ambiguity of the conserved current [22]. Two currents �a and �̃a are
the source terms of the field strengths. They also conserved simultaneously and yield the same
value if integrated over a closed surface. Their actual values, however, are different.

Consider the variation relation (4.2). It can be written as

δL̃ = δψ ∧ (mat)E + δϑa ∧ (gr)Ea + d(� + δ�) (4.14)

or, on shell,

δL̃ ≈ d(� + δ�). (4.15)

Thus the diffeomorphism invariance generates a weak conserved current

�̃(ξ) = −ξ�L̃ + �(ξ) + ξ�d� + d(ξ��)

= −ξ�L + �(ξ) + d(ξ��) = �(ξ) + d(ξ��).
(4.16)

Inserting the decomposition �(ξ) = S(ξ) + dQ(ξ), we obtain

�̃(ξ) = S(ξ) + d[Q(ξ) + ξ��]. (4.17)

Thus, the total derivative shift of the Lagrangian preserves the algebraic part of the Noether
current, whereas it induces a shift of the Noether charge:

Q̃(ξ) = Q(ξ) + ξ��. (4.18)

5. Examples

5.1. A p-form field

Consider a Maxwell-type Lagrangian for a p-form field A given on an n-dimensional manifold

L = − 1
2F ∧ ∗F (5.1)

where F = dA is the field strength and ∗ is the Hodge operator.
Variation of the Lagrangian takes the form

δL = − 1
2δF ∧ ∗F − 1

2F ∧ δ ∗ F. (5.2)

Now, we have to calculate the variation of the form δ ∗ F . For a well-defined notion of the
energy–momentum current, the variation δϑa of the coframe field has to be taken into account
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together with the variation δA of the p-form field. In this case the variational operator does
not commute with the Hodge operator, δ∗ 
= ∗δ. We will use here the master formula [26],
which, in the case of (pseudo-)orthonormal coframe, takes the form

(δ ∗ − ∗ δ)F = δϑa ∧ (ea� ∗ F) − ∗[δϑa ∧ (ea�F)]. (5.3)

Hence,

F ∧ δ ∗ F = F ∧ ∗δF + δϑa ∧ [(−1)p+1F ∧ (ea� ∗ F) − (ea�F) ∧ ∗F ] (5.4)

and (5.2) reads

δL = δF ∧ ∗F + 1
2δϑa ∧ ((ea�F) ∧ ∗F + (−1)pF ∧ (ea� ∗ F)). (5.5)

Thus, the field momentum (2.2) takes the value π = ∗F , while the current of the field A

vanishes, σ = 0. Hence, the field equation reads

d ∗ F = 0. (5.6)

Using (5.5), we obtain the energy–momentum current as

�a = 1
2 ((ea�F) ∧ ∗F + (−1)pF ∧ (ea� ∗ F)) (5.7)

and the Noether charge as

Q(ea) = (ea�A) ∧ ∗F. (5.8)

For the Maxwell field (p = 1) on a 4D manifold, equation (5.7) gives the correct result.
The trace of the energy–momentum tensor, corresponding to the current (5.7), is

proportional to the n-form ϑa ∧ �a . Calculate

ϑa ∧ �a = − 1
2 (n − 2p − 2)F ∧ ∗F. (5.9)

Thus the corresponding energy–momentum tensor is traceless if and only if n = 2(p + 1), i.e.,
in the case when the strength F is a middle form (for even n).

The antisymmetric part of the energy–momentum tensor is proportional to the (n−2)-form
ea��a , see, for instance, [32]. Calculating this expression, we obtain

ea��a = 0. (5.10)

Thus, the energy–momentum tensor of the p-form field is symmetric for an arbitrary value of
the degree p.

5.2. Vacuum GR in coframe representation

Let a differential manifold M be endowed with a pseudo-orthonormal coframe field ϑa . It
means that the metric on M can be represented as

g = ηabϑ
a ⊗ ϑb (5.11)

where ηab = diag(−1, 1, . . . , 1). Consequently the Hodge map, which depends on the metric
tensor, acts on the basis forms as follows,

∗(ϑa1 ∧ · · · ∧ ϑaq ) = εa1···aq ···anϑaq+1 ∧ · · · ∧ ϑan
(5.12)

where the indices are lowered accordingly to ϑa := ηabϑ
b.

The Einstein–Hilbert Lagrangian corresponds to the coframe Lagrangian [28, 30] as

L = 1
2 [(Ca ∧ ϑb) ∧ ∗(Cb ∧ ϑa) − 2(Ca ∧ ϑa) ∧ ∗(Cb ∧ ϑb)] + d� (5.13)

where Ca := dϑa and

� = ϑa ∧ ∗Ca. (5.14)
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Using the notation

Fa := Ca − 2ea�(ϑm ∧ Cm) − ϑa ∧ (em�Cm) (5.15)

the Lagrangian can be written in a compact form as

L = 1
2Ca ∧ ∗Fa + d�. (5.16)

Its variation can be written [31, 32] as

δL = δCa ∧ ∗Fa + δϑa ∧ (ea�L − (ea�Cb) ∧ ∗Fb) + d(δ�). (5.17)

Thus we identify the field momentum and the conserved current, respectively

a = ∗Fa �a = ea�L − (ea�Cb) ∧ ∗Fb. (5.18)

Consequently, the field equation is

d ∗ Fa = �a. (5.19)

The canonical Noether charge is shifted accordingly to

Q(ea) = ∗Fa + ea��. (5.20)

The Lagrangian (5.9) is invariant under two different groups of symmetries:

(i) The (pseudo-)group of diffeomorphism transformations of the manifold which is
equivalent to the set of coordinate transformations. Such an invariance is usually referred
to as general covariance. All the quantities introduced above (including the conserved
current!) are manifestly invariant under these transformations.

(ii) The group of local (pointwise) transformations of the coframe. The Lagrangian preserves
its form if we replace the coframe by

ϑa → Aa
b(x)ϑb where for all x Aa

b(x) ∈ SO(1, 3). (5.21)

Due to the well-known theorem of the calculus of variations, the field equation (5.19) is
invariant under these transformations. However, the separation of this equation to the exact
form on the left-hand side and the conserved current on the right-hand side is not invariant.
Thus also the diffeomorphism invariant conserved current �a is not invariant under the local
‘internal’ transformations (5.21). Certainly, this result corresponds to the known fact that
every covariant expression constructed from the first-order derivatives of the metric is trivial.
Actually, in view of the complete group of invariance transformation of the Lagrangian, the
conserved current (5.18) is only a type of a pseudo-tensor.

5.3. Metric-free electrodynamics

In the axiomatic approach to classical electrodynamics [33–35], spacetime is considered as a
four-dimensional differentiable manifold without any additional geometrical structure (metric
or connection).

The first axiom of the electric charge conservation dJ = 0 yields the field equation

dJ = 0 �⇒ dH = J. (5.22)

The second axiom postulates the existence of the Lorentz force density

fα = (eα�F) ∧ J. (5.23)

The third axiom requires the magnetic flux conservation

dF = 0 �⇒ F = dA. (5.24)
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Here J is the electric current density 3-form, F = (E,B) is the untwisted 2-form of
the electromagnetic field strength, H = (H,D) is the twisted 2-form of the electromagnetic
excitation, and ea is a frame field on the manifold. A fairly detailed account, including the
conventions and references to the literature, can be found in [34].

To complete the formulation, a relation between H and F is required, namely the
constitutive law. This constitutive law is postulated to be local and linear (‘linear
electrodynamics’). The relation between the two forms is established by an odd constitutive
tensor κ , which maps even 2-forms to odd 2-forms and vice versa. Namely, H = κ(F ). We
want to find a componentwise representation of κ . Introduce a coframe field ϑa , which is dual
to the frame field ea appearing in (5.23). Thus, ϑab = ϑa ∧ ϑb is a basis for even 2-forms.
Using the Levi-Civita pseudo-tensor εabcd a volume element ε can be defined by the coframe
as ε = εabcdϑ

abcd/4!. Thus, εab = ea�eb�ε is the basis for odd 2-forms. Accordingly, in the
components,

F = 1
2Fabϑ

ab H = 1
2Habεab. (5.25)

Linearity of the κ-map means εab = κ(ϑab). Thus, the tensor representation χmnab of the
operator κ reads

κ(ϑab) := 1
2χmnabεmn (5.26)

and

H = κ(F ) = 1
2Fabκ(ϑab) = 1

4Fabχ
mnabεmn (5.27)

or, in components,

Hmn = 1
2χmnabFab. (5.28)

Consider the ‘ordinary’ Lagrangian of the free electromagnetic field

L = − 1
2F ∧ H = − 1

2F ∧ κ(F ). (5.29)

Rewrite the Lagrangian componentwise as

L = − 1
16Fabϑ

ab ∧ Fpqχ
pqmnεmn = 1

8FabFcdχ
abcdε. (5.30)

Under the action of the group GL(4, R) the tensor χabcd can be irreducibly decomposed
into three pieces,

χabcd = (1)χabcd + (2)χabcd + (3)χabcd (5.31)

where
(3)χabcd := χ [abcd] (5.32)

(2)χabcd := 1
2 (χabcd − χcdab) (5.33)

(1)χabcd := χabcd − (2)χabcd − (3)χabcd . (5.34)

The Lagrangian (5.30) has an additional symmetry:

χabcd = χcdab. (5.35)

Thus the skewon part (2)χabcd does not contribute to this Lagrangian.
We are looking for the energy–momentum current of the electromagnetic fields F and

H. Due to the linearity of κ , the constitutive tensor depends only on the non-electromagnetic
(geometric) variables. So, its variation will not give a contribution to the energy–momentum
current of the electromagnetic field �a . We will show now that, in order to obtain the true
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expression for �a , it is enough to take into account only the variation of the potential A and
of the coframe ϑa .

We have

δL = − 1
2δ(F ∧ κF ). (5.36)

Using the symmetry (5.35), we rewrite the right-hand side as

δL = 1
4δ(Fab)H

abε + 1
8FabH

abδ(ε). (5.37)

Observe now, that the variations on right-hand side of (5.37) do not depend on the odd operator
used. Thus, analogously to the standard Maxwell theory and to the p-form field expression
(5.5), we may write

δL = δF ∧ H + δϑa ∧ �a (5.38)

where �a = ∂L/∂ϑa is the Hilbert energy–momentum current:

�a = 1
2 [(ea�F) ∧ H − F ∧ (ea�H)] . (5.39)

Using the commutativity of the operators δ and d and extracting the total derivative, we obtain
the variation of the Lagrangian (5.29) in the form

δL = d(δA ∧ H) + δA ∧ dH + δϑa ∧ �a. (5.40)

In accordance with the non-dynamical coframe procedure (see section 2), we extract from this
relation only one field equation dH = 0, which is in accordance with (5.22) providing J = 0.
For the field that satisfies this field equation, the variation (5.40) reads

δL = d(δA ∧ H) + δϑa ∧ �a. (5.41)

Consider now the variations generated by diffeomorphism invariance of the Lagrangian:

δA = ξ�dA + d(ξ�A) (5.42)

δϑa = ξ�dϑa + d(ξ�ϑa) (5.43)

δL = d(ξ�L). (5.44)

We take for non-dynamical coframe δϑa = 0. Consequently, relation (5.41) becomes

d�(ξ) + d(ξ�ϑa) ∧ �a = 0 (5.45)

where

�(ξ) = −ξ�L + [ξ�dA + d(ξ�A)] ∧ H. (5.46)

Extracting the total derivative, we may write it as

�(ξ) = S(ξ) + dQ(ξ) (5.47)

with

Q(ξ) = ξ�A ∧ H (5.48)

S(ξ) = −ξ�L + ξ�dA ∧ H − ξ�A ∧ dH. (5.49)

On shell dH = 0. Thus (5.45) becomes

dS(ξ) + d(ξ�ϑa) ∧ �a = 0 (5.50)

with

S(ξ) = −ξ�L + ξ�F ∧ H. (5.51)
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The first cascade equation (2.33) yields the conservation law

dS(ea) = 0 (5.52)

whereas the second cascade equation turns out to be an identity S(ea) = −�a . Thus we have
derived the conservation law for the Hilbert current

�a = ea�L − ea�F ∧ H (5.53)

which is shown to be associated with the diffeomorphism invariance of the Lagrangian.

6. Outlook of main results

Let us summarize the results of our consideration. We have examined the Noether procedure
for a diffeomorphism invariant Lagrangian in three different ways:

(1) We considered the variation of the Lagrangian, taking into account only the field itself
and not involving any information on the geometry of the manifold. In this way, we have
obtained a conserved current which identically vanishes on shell.

(2) The second consideration was based on a non-dynamical coframe. Corresponding cascade
equations turned out to describe the equivalence between canonical and coframe (Hilbert)
current. In this way, we derived a conserved current which, on shell, does not vanish
identically.

(3) We have considered a system of two dynamical fields: a p-form field ψ and a coframe
field ϑa . The Noether procedure is consistent in this case. The vanishing canonical
current of the system represents a relation between the Noether and the Hilbert currents.
Consequently, the conservation law for the canonical current of the p-form field yields the
conservation law for the Hilbert currents of this field. In this way the Hilbert current is
related to the diffeomorphism invariance of the Lagrangian. Consequently, it obtains the
status of the energy–momentum current. Moreover, the Hilbert current of the system is
shown to be the source of the coframe field. We also derive an expression for the Noether
charge.

The main result of our consideration is that in order to have a complete and non-contradictory
Noether current, it is necessary to involve the geometry of the manifold, such as the coframe
field, in the variational procedure.

This result may be correlated with Dicke’s analysis [27] which shows that the gravity
field is unique in having a Lagrangian describing an ‘interaction only with itself’. All other
viable Lagrangians have to involve the metric. Thus, in fact, they describe an interaction with
the gravitational field.
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